

Probability-Based Parameter Selection for
Black-Box Fuzz Testing

Allen D. Householder
Jonathan M. Foote

August 2012

TECHNICAL NOTE
CMU/SEI-2012-TN-019

CERT Program

http://www.sei.cmu.edu

http://www.sei.cmu.edu

SEI markings v3.2 / 30 August 2011

Copyright 2012 Carnegie Mellon University.

This material is based upon work funded and supported by United Stated Department of Defense under Contract No.

FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally

funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do

not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the

SEI Administrative Agent

ESC/CAA
20 Schilling Circle, Building 1305, 3rd Floor
Hanscom AFB, MA 01731-2125

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,

WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is

granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other external and/or commercial

use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

® CERT is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

* These restrictions do not apply to U.S. government entities.

mailto:permission@sei.cmu.edu

CMU/SEI-2012-TN-019 | i

Table of Contents

Abstract v

1 Introduction 1

2 Background: Black-Box Fuzz Testing with the CERT BFF 2

3 Maximizing the Number of Unique Crashes 4
3.1 Selecting Seed Files 4
3.2 Modeling the Process 4
3.3 Specifying Ranges 6
3.4 Generalizing the Algorithm 7

4 Methodology 8

5 Results and Discussion 10

6 Limitations and Future Work 13

7 Conclusion 14

Appendix A: CERT BFF Configuration 15

Appendix B: Scorable Set Example Source Code (Python) 17

References 19

CMU/SEI-2012-TN-019 | ii

List of Figures

Figure 1: Main Loop for a Fuzz Campaign in the CERT BFF 2

Figure 2: Experiment Results Summary for FFmpeg 11

Figure 3: Experiment Results Summary for Outside In 12

CMU/SEI-2012-TN-019 | iii

List of Tables

Table 1: Application Test Summary 8

Table 2: Experiment Results Summary for FFmpeg 10

Table 3: Experiment Results Summary for Outside In 11

CMU/SEI-2012-TN-019 | iv

CMU/SEI-2012-TN-019 | v

Abstract

Dynamic, randomized-input functional testing, or black-box fuzz testing, is an effective technique
for finding security vulnerabilities in software applications. Parameters for an invocation of black-
box fuzz testing generally include known-good input to use as a basis for randomization (i.e., a
seed file) and a specification of how much of the seed file to randomize (i.e., the range).This re-
port describes an algorithm that applies basic statistical theory to the parameter selection problem
and automates selection of seed files and ranges. This algorithm was implemented in an open-
source, file-interface testing tool and was used to find and mitigate vulnerabilities in several soft-
ware applications. This report generalizes the parameter selection problem, explains the algo-
rithm, and analyzes empirical data collected from the implementation. Results of using the algo-
rithm show a marked improvement in the efficiency of discovering unique application errors over
basic parameter selection techniques.

CMU/SEI-2012-TN-019 | vi

CMU/SEI-2012-TN-019 | 1

1 Introduction

Dynamic randomized-input functional testing, also known as black-box fuzz testing or fuzzing, has
been widely used to find security vulnerabilities in software applications since the early 1990s [1,
2, 3]. Since then, fuzz testing evolved to encompass a multitude of software interfaces and a varie-
ty of testing methodologies [4, 5, 6].

Because of their basic nature, black-box fuzzing techniques and tools are relatively simple to im-
plement and use. However, black-box fuzzing has known disadvantages when compared to more
sophisticated techniques—notably inferior code path coverage and reliance on the selection of a
good set of seed input (e.g., seed files) [4, 5]. Despite advances in fuzzing tools and methodolo-
gies, many security vulnerabilities in modern software applications continue to be discovered us-
ing these relatively unsophisticated techniques [7, 8, 9, 10, 11].

Studies that compare fuzzing methodologies generally recommend using a mix of methodologies
to maximize the efficacy of vulnerability discovery [5, 7, 12, 13, 14]. Our experience with black-
box fuzz testing showed that the difference between an effective fuzzing effort (i.e., one that finds
vulnerabilities) and an ineffective one (i.e., one that does not) often lies in the selection of pa-
rameters passed to the fuzzing tool.

In this report, we present research focused on automating parameter selection for a sustained
black-box fuzz testing effort. The algorithm presented here was implemented in the open-source
CERT® Basic Fuzzing Framework (BFF) product [15] and was used to discover several previous-
ly unknown security vulnerabilities [8, 9, 10, 11]. Although our work was implemented to test
application file interfaces running on Unix operating systems, it is notionally applicable to other
fuzzing tools, operating systems, and interface types.

This report covers the following topics:

• We describe a workflow for black-box fuzz testing that maximizes the number of unique
application crashes found during a sequence of test iterations.

• We identify two parameters for an iteration of file fuzz testing and generalize the problem of
parameter selection.

• We present an algorithm to be used for selecting fuzzing parameters that maximize the num-
ber of unique application errors.

• We discuss the results of executing an implementation of the algorithm on several applica-
tions and compare them to the results of executing the same number of tests run without the
algorithm.

® CERT is a registered trademark owned by Carnegie Mellon University.

CMU/SEI-2012-TN-019 | 2

2 Background: Black-Box Fuzz Testing with the CERT BFF

The CERT BFF is a system used for testing the security of applications on Unix-based (e.g.,
Linux, Mac OS X) operating systems. The CERT BFF uses Sam Hocevar’s zzuf tool [16] to per-
form mutation-based, black-box fuzz testing on application file interfaces. The zzuf tool in turn
executes the application under test. We refer to successive invocations of zzuf testing a single ap-
plication as a fuzzing campaign. The CERT BFF allows a security auditor to perform a fuzzing
campaign by automating invocations of the zzuf tool (see Figure 1).

The zzuf testing tool is open source software, so detailed user documentation is publicly available
[16, 17]. Each invocation of the zzuf tool repeatedly executes the application under test with mu-
tated test cases until a crash is detected or until an optional maximum number of application exe-
cutions exit without a crash. In this report, we refer to each execution of the application under test
(via zzuf) as an iteration of fuzz testing. We refer to successive iterations executed under a single
invocation of zzuf as an iteration interval. In the CERT BFF, the maximum interval size passed to
zzuf is configurable, but the default is 500 iterations.

In addition to the application under test, the maximum iteration interval size, and other options, an
invocation of zzuf must also specify a seed for randomization (randomization seed), a path to a
file to use as a basis for mutation (seed file), and a proportion of the file to randomize (range).
The zzuf tool randomly mutates the seed file by changing a number of bits roughly equal to the
specified range multiplied by the size of the seed file. The number and position of the bits that are
changed is randomized based on the randomization seed. Randomization in zzuf is implemented
so that repeated invocations using the same randomization seed, range, and seed file will produce
identical test cases. In this report we refer to the range and seed file collectively as fuzzing param-
eters.

A fuzz campaign in the CERT BFF is a loop built around successive invocations of the zzuf tool
(see Figure 1). First, the CERT BFF chooses zzuf invocation parameters for the next iteration in-
terval by examining the running set of crashing test cases (if any exist). The algorithm used to
choose the zzuf invocation parameters is the focus of subsequent sections of this report.

Figure 1: Main Loop for a Fuzz Campaign in the CERT BFF

1. Choose
fuzzer

parameters

2. Invoke
fuzzer with

chosen
parameters

3. Keep
unique
crashes

4. Update
fuzzer

parameter
scores

CMU/SEI-2012-TN-019 | 3

Second, the CERT BFF invokes zzuf with the chosen parameters. If a crash is detected during that
iteration interval, the application is launched using a debugger to generate a hash of the applica-
tion back trace at the point of failure. The logic used to generate this hash is extended from the
fuzzy stack hash method employed in a study researching dynamic test generation to find bugs in
Linux programs [5].

The hash determines if the detected crash represents a unique application error for the fuzz cam-
paign. Finally, if the new hash is unique, it is added to a running set, the parameter scores are up-
dated, and additional analysis is performed on the new unique crash. Besides hashes, the running
set also includes metadata such as the crashing test case, the seed file from which it was derived,
and the fuzzing parameters used to find it.

Initial selection of seed files [4], application and system configuration [18], triage of application
errors [19], and application error analysis are important aspects of a fuzzing campaign. However,
these aspects are not directly relevant to the fuzzing parameter selection algorithm outlined in this
report, so we do not discuss them in detail.

CMU/SEI-2012-TN-019 | 4

3 Maximizing the Number of Unique Crashes

In this section, we describe two aspects of the parameter selection problem and show how the ap-
plication of a generalized solution can improve the results of a fuzzing campaign.

Recent fuzzing frameworks and research use file format grammars, static analysis, white-box ap-
proaches, and other techniques to direct fuzzing based on code execution paths [5, 7, 20, 21, 22].
This new approach is simpler because we begin a campaign with very little knowledge about the
seed files, format details, or code coverage. Instead, we apply basic probability theory to adjust
parameter selection as the campaign progresses to maximize the number of unique crashes found
during a fuzzing campaign. This section first describes how the CERT BFF attempts to reach this
goal for seed files, then ranges, and then generalizes the algorithm to apply to both parameters.

3.1 Selecting Seed Files

To find as many unique crashes as we can, we begin by assuming no knowledge of the seed files.
We simply empirically measure their crash density, which we define as follows: for the i th seed
file, the crash density di is the empirically measured number of unique crashes found while fuzz-
ing the file (ui) divided by the number of trials attempted (ti).

equation 1 ݀௜ = ௜ݐ௜ݑ

The goal is to measure the crash density of a seed file, then allocate the fuzzing campaign’s re-
sources to focus the bulk of the effort on the seed files that are most productive (i.e., have a higher
crash density). Thus we expect the selection probability across the seed file to be set to vary over
time as the campaign finds (or does not find) new unique crashes within the set. We do not aban-
don seed files entirely, though, because it is possible that they could produce unique crashes.

The desired solution has the following four criteria:

1. A seed file with observed crash density d should be chosen twice as often as a seed file with
an observed crash density of d/2.

2. If the crash density of two files is equal, either one should be chosen with equal probability.

3. Seed files with no observed crashes should not be abandoned because they could still pro-
duce unique crashes.

4. Given two files, both with 0 observed crashes, the one with fewer trials should be preferred
over the one with more trials because we know more about the one with more trials.

3.2 Modeling the Process

We begin by modeling the fuzzing process as a sequence of Bernoulli trials. Each trial is inde-
pendent and can have one of two possible outcomes: either the program crashes or it does not. We
leverage this simple model to equate the crash density of individual seed files with the probability
of finding a crash in the next iteration.

CMU/SEI-2012-TN-019 | 5

In the CERT BFF, an interval may contain a few hundred to a few thousand iterations at a time to
mitigate setup and teardown costs (in terms of both CPU and person hours) associated with invok-
ing the fuzzing tool. For each invocation of the fuzzing tool, we choose the next seed file with a
probability proportional to its observed crash density relative to the other seed files’ crash densi-
ties. Therefore, to make this selection, we first calculate the sum D of all the crash densities:

equation 2 ܦ = ෍ ݀௜௡
௜ୀଵ

Then we calculate a probability distribution on the set of seed files S such that each seed file si is
chosen with probability pi given by

equation 3 ݅݌ = ܦ݅݀

For the start-up case in which both ui and ti are zero, which would leave di undefined, we simply
assign the value di=1. This approach is essentially what is called “fitness-proportionate selec-
tion,” as described by John Holland in his book Adaptation in Natural and Artificial Systems [23].

At this point, we satisfied the first two criteria for the desired solution listed in Section 3.1. For
two files with u1=6 and u2=3 and an equal number of trials t1=t2=100, we can see that p1=2p2. Also, if d1=0.02 and d2=0.02, then p1=p2. However, we still must deal with the case
where some number of trials was completed but no crashes were observed as in the third criterion.
As it stands, if ui=0, then di=0 and thus pi=0.

Because we are describing a series of Bernoulli trials, we expect the results to conform to a bino-
mial distribution. However, since the number of trials is much larger than the expected number of
successes (a single success out of thousands of trials is typical), we can apply the Poisson approx-
imation of the binomial distribution to allow for easier calculation of confidence intervals.

The Poisson distribution is described by the parameter λ: the number of successes divided by the
number of trials. Hence the crash density di can be substituted for the parameter λ in a Poisson
distribution. Doing so allows us to take advantage of confidence intervals on the Poisson distribu-
tion to address the third criterion.

We calculate the one-sided 95% upper confidence bound on the Poisson distribution UCB (di, 95%) to be used in lieu of the crash density di for each file. Substituting into equation 2, it be-
comes

equation 4 ܦ = ෍ ,௜݀)ܤܥܷ 95%)௡
௜ୀଵ

and therefore a modified pi is also used such that

equation 5 ݅݌ = ,݅݀)ܤܥܷ ܦ(95%

CMU/SEI-2012-TN-019 | 6

Because the 95% upper confidence bound is always greater than zero, we no longer have a prob-
lem with files that have no observed crashes. They will be chosen with a non-zero probability.
Furthermore, since the width of the confidence interval narrows, given more trials and the same λ
(or di), the final criterion is addressed because two files, both having no observed crashes, will
result in preferring the one with fewer trials due to its larger confidence interval value.

The following procedure summarizes the algorithm thus far:

1. Given a set of seed files, assign each file an initial crash density of 1.0 (i.e., assume they will
definitely crash on the next try).

2. Calculate pi for each file (pi for all files will be equal at this point).

3. Choose a file according to the distribution given in step 2.

4. Fuzz the file for an interval of iterations (e.g., a few hundred trials).

5. Calculate the upper 95% confidence interval on the observed crash density for that file (i.e.,
update pi).

6. Repeat the steps, starting with step 2.

3.3 Specifying Ranges

Different file formats have different structural requirements. Some are merely a header followed
by data. Others have higher structural requirements (e.g., XML, PDF). Fuzzing tools typically
have either a set value or require the analyst to choose a parameter that specifies how much input
mutation should be performed. As previously described, zzuf provides a parameter called range
that allows the user to specify the proportion of bits that will be flipped in the test cases it gener-
ates.

Ranges are expressed as a decimal value between 0.0 and 1.0 that indicates the proportion of the
file that will be altered (e.g., a range of 0.06 would mean that 6% of the bits will be flipped when
the file is read). The range parameter allows a lower and upper limit to be specified, so a user can
instruct zzuf to fuzz between 10% and 50% of the bits in the file using the range value 0.1–0.5.

Using various fuzzing tools, we learned that if too many bits are flipped, the file format may no
longer be recognized as valid. The program may reject the file as invalid before processing data
that would reveal defects. At the same time, fuzzing too few bits in the file inadequately searches
the space of possible inputs. We also observed that while there can be a significant difference be-
tween fuzzing 0.5% of the bits in a file versus 1%, there is little difference between fuzzing 90%
and 90.5% of the file. Thus, we divide the range 0.0–1.0 into exponentially scaled ranges starting
with a range that effectively fuzzes one or two bits up through a range that fuzzes between 60–100% of the file.

Once we calculate the various ranges we plan to use, we still must decide how to allocate the
fuzzing campaign across those ranges. A naïve implementation would be to simply select a range
with equal chance of choosing any given range. Instead, we applied the same method used for
seed file selection to measure each range’s crash density. This approach permits us to automatical-
ly adjust the fuzzing campaign’s range parameters on each seed file based on what the campaign
actually found. Different files may have different optimal ranges for any number of reasons, so it
is best to adjust the range parameters for individual files rather than for a set of files.

CMU/SEI-2012-TN-019 | 7

The algorithm is nearly identical to that presented for seed files:

1. Given a set of ranges for a seed file, assign each file an initial crash density of 1.0 (i.e., as-
sume they will crash on the next try).

2. Calculate pi for each range (they will all be equal at this point).

3. Choose a range according to the distribution given in step 2.

4. Fuzz the file for an interval of iterations (i.e., a few hundred trials).

5. Calculate the upper 95% confidence interval on the observed crash density for that range
(i.e., update pi).

6. Repeat the steps, starting with step 2.

3.4 Generalizing the Algorithm

We successfully applied this algorithm to the tuning of a fuzz campaign’s parameters of seed file
selection and range selection. As a result, we formulated a generalized model, which we refer to
as a scorable set. The scorable set maintains a set of items, each of which keeps track of its num-
ber of successes and trials, which it, in turn, uses to calculate its 95% upper confidence bound to
be used in probability calculations.

We expect to use this model for other parameter selection problems where we lack a more robust
model. For example, in a fuzzing campaign where multiple mutation strategies (e.g., bitwise,
bytewise) are used, a scorable set with the mutation strategies as the individual items could be
used to automatically measure and discover the most productive mutation strategy. A simplified
example of the scorable set model implemented in Python can be found in Appendix B: Scorable
Set Example Source Code (Python).

CMU/SEI-2012-TN-019 | 8

4 Methodology

In this section, we describe the methodology for testing the approach described in Section 3.

The new algorithm was initially developed using the CERT BFF to fuzz ImageMagick’s convert
program version 5.2.0. This older version of convert is known to be highly susceptible to fuzzing
(i.e., it crashes frequently). Each iteration of fuzz testing completes quickly, so it provides a quick
turnaround for testing new algorithms. The initial results from convert were promising.

To more conclusively determine whether the algorithm for parameter selection could reveal more
unique application errors than completely random parameter selection, we designed an experi-
ment to test two applications. We executed scenarios with the algorithm enabled and scenarios
without the algorithm enabled for both applications. If the scenarios using the new algorithm re-
vealed more unique crashes than the ones without it, we would conclude that the algorithm im-
proved the detection of unique application errors over the default (purely random) scenario.

To confirm the results of the experiment, we set up two distinct fuzzing campaigns using the
CERT BFF: one using FFmpeg version SVN-r0.5.5-4:0.5.5-1 and the other using Oracle’s Out-
side In 8.3.5 library [13, 24]. We chose these two products because they offer a large attack sur-
face stemming from their support for many different types of files as input.

FFmpeg is a tool used for converting, recording, and streaming audio and video. Outside In pro-
vides the ability to read and transform various unstructured file formats. For FFmpeg, we used a
collection of various video files found on the internet as seed files. Similarly, the Outside In tests
used a variety of document and other file types that Outside In normally handles. Table 1 de-
scribes the seed files we used in more detail.

Table 1: Application Test Summary

 FFmpeg Outside In

Version SVN-r0.5.5-4:0.5.5-1 8.3.5

Number of Seed Files 104 76

Seed File Types AVI, F4V, FXM, MNG, MPG,
MP4, OGV, MOV, SWF,
ASF, WMV

123, AI, ASF, EML, EXE, DLL, CDR, DCX, DPT, DWG,
EMF, GDF, ICO, ICS, JB2, JP2, JPX, MHT, MGS, ODG,
ODT, OFT, ONEPKG, PCX, PDF, PICT, PPM, PPT,
PR4, QPW, MOV, RTF, RM, SDA, SDC, SDD, SDW,
SHW, SVG, SXC, SXD, SXI, SXW, TXT, TGA, TIF, DAT,
VCF, AVI, VSD, WB1, WB2, WB3, WBMP, WMV, WK1,
WK2, WK3, WK4, WMF, WPG, XPS, XSN

Seed File Sizes 1KB-960KB (median 12KB) 75B-3.9MB (median 48KB)

For each application, we created four scenarios:

1. equiprobable selection of both seed files and ranges (denoted S0 R0 in Tables 2 and 3)

2. equiprobable seed file selection with scorable-set-based range selection (S0 R1)

3. scorable-set-based seed file selection with equiprobable range selection (S1 R0)

4. scorable-set-based seed file and range selection (S1 R1)

CMU/SEI-2012-TN-019 | 9

Finally, because the fuzzing process is inherently stochastic, for each of the four scenarios we
created 5 virtual machine clones to allow us to analyze the variability of the results.1 Each virtual
machine clone was then configured to use a different initial randomization seed value to be passed
to zzuf via the CERT BFF. In total, there were 20 virtual machines per application. The virtual
machines were allowed to run for 18 days for FFmpeg and 6 days for Outside In. Examples of the
CERT BFF configuration for both campaigns are listed in Appendix A: CERT BFF Configuration.

1 We used the Debian-based “DebianFuzz” virtual machine distributed with the CERT BFF version 2.5. This vir-

tual machine is designed to provide a host environment specifically tuned for fuzzing. By default, it expects a
single processor and 500MB of RAM, so it is sufficiently lightweight to allow many clones to exist on a single
physical system.

CMU/SEI-2012-TN-019 | 10

5 Results and Discussion

This section describes the results of the controlled test conducted using the approach described in
Section 4.

Results for both applications indicate that after an initial learning period where the algorithm ex-
plores the parameter space, the scenario in which both seed file and range selection use the scora-
ble set algorithm outperforms the other scenarios.

At the start of a campaign, the seed files and ranges are all equally likely to be selected because
they all have equal crash density values of 1. After the first seed file and range are selected and an
iteration interval is completed, their crash densities reflect the measured value (as already de-
scribed), which is typically much smaller than 1.

Because of the selection algorithm, a specific seed file and range will likely not be selected again
until all other ranges and seed files receive some attention. For a fuzzing campaign with dozens of
seed files and a few dozen ranges for each seed file, this start-up phase can take a few thousand
iterations to find the first crash, assuming it finds any at all. The findings from the experiment
indicate that all four scenarios behave similarly until after a few crashes are found.

For FFmpeg, after 500,000 iterations the scenario with both selection features enabled yielded an
average of 121 unique crashes versus an average of 106 unique crashes for the equiprobable sce-
nario (14% improvement). At 1 million iterations, the score was 210 to 143 for both features ver-
sus equiprobable, respectively (47% improvement). At 5 million tests, the score was 616 to 333,
respectively (85% improvement).

The mixed scenarios with either range selection or seed file selection enabled fell in the middle at
just over 400 unique crashes after 5 million tests. Table 2 summarizes the results for the FFmpeg
campaign.

Table 2: Experiment Results Summary for FFmpeg

FFmpeg Unique Crashes Found (Average of 5 Runs Each)

N Trials S0 R0 S0 R1 S1 R0 S1 R1

500 0 0 0 0

1K 0 0 0 0

5K 3 3 2 4

10K 6 7 6 8

50K 23 23 23 23

100K 38 33 39 41

500K 106 95 112 121

1M 143 151 172 210

5M 333 421 413 616

The results are shown more visually in Figure 2. Notice the clear advantage of using the S1R1
scenario.

CMU/SEI-2012-TN-019 | 11

Figure 2: Experiment Results Summary for FFmpeg

Similarly, the experiment results for Outside In, at 500,000 tests with both features enabled,
yielded an average of 78 unique crashes versus an average of 65 unique crashes for the equiprob-
able scenario (20% improvement). By 1 million tests, the score was 113 versus 70, respectively
(61% improvement).

Due to the shorter duration of the Outside In campaign, we did not reach 5 million tests. The
mixed scenarios produced between 84 and 104 unique crashes after 1 million tests. Results are
summarized in Table 3.

Table 3: Experiment Results Summary for Outside In

Outside In Unique Crashes Found (Average of 5 Runs Each)

N Trials S0 R0 S0 R1 S1 R0 S1 R1

500 0 0 0 0

1K 0 0 0 0

5K 1 2 1 1

10K 3 3 3 3

50K 14 14 15 16

100K 24 22 26 28

500K 65 56 75 78

1M 70 84 104 113

Figure 3 illustrates that even with much fewer tests run, there is a clear advantage to using a selec-
tion algorithm.

0

100

200

300

400

500

600

700

0 1000 2000 3000 4000 5000 6000

U
ni

qu
e

Cr
as

he
s F

ou
nd

Number of Trials (Thousands)

S0 R0

S0 R1

S1 R0

S1 R1

CMU/SEI-2012-TN-019 | 12

Figure 3: Experiment Results Summary for Outside In

As shown in Tables 2 and 3 as well as Figures 2 and 3, the longer the campaigns ran, the larger
the disparity between the purely random (S0R0) and learning (S1R1) scenarios.

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

U
ni

qu
e

Cr
as

he
s F

ou
nd

Number of Trials (Thousands)

S0 R0

S0 R1

S1 R0

S1 R1

CMU/SEI-2012-TN-019 | 13

6 Limitations and Future Work

In this section, we discuss the limitations of this work and explore possible improvements and
extensions.

We observed that given similar elapsed times (18 days for FFmpeg and 6 days for Outside In), the
S1R1 instances completed about 10% fewer total iterations than the S0R0 instances. While we did
not collect granular timing data and therefore did not perform a detailed analysis, one possible
explanation of this difference is because S1R1 found more unique crashes, more time was spent
performing the additional analyses that the CERT BFF does for each unique crash.2

Furthermore, by focusing on parameters that produced more unique crashes, we expect the S1R1
campaigns to observe more duplicate crashes as well. This feature implies more time spent deter-
mining uniqueness and less time spent fuzzing. While we have explained an intuitive rationale for
this phenomenon, future work could include a detailed timing analysis of fuzz campaigns to con-
firm our conclusions.

While the team continually tunes the crash uniqueness algorithm as we test various types of appli-
cations, we learned from coordinating results with software vendors that the unique fuzzy stack
hashes do not necessarily correspond directly to unique application bugs. Improving the fuzzy
stack hashing algorithm and augmenting it with other types of analysis could strengthen data used
to compare automated bug-finding techniques, both in the CERT BFF and other testing frame-
works.

The controlled test described in this report involved executing fuzz campaigns against two appli-
cations for several days each. The results presented are consistent with what we observed in the
ongoing operational use of the CERT BFF against various software applications. However, the
data set used to draw conclusions in this report could be strengthened by testing additional appli-
cations in a controlled manner.

While the algorithm in this report proved to be effective, we have begun exploring other statistical
approaches that may lend themselves more directly to analysis and scaling, such as Bayesian in-
ference [25]. We leave exploration of these approaches to future work.

2 When the CERT BFF finds a new unique crash, it runs the test case through the GNU debugger (GDB) and the

valgrind and callgrind tools and records the stderr produced for the test case.

CMU/SEI-2012-TN-019 | 14

7 Conclusion

In this report, we described a workflow for black-box fuzz testing and an algorithm for selecting
fuzz parameters to maximize the number of unique application errors discovered during a fuzzing
campaign. We presented an open-source implementation of the algorithm in the CERT BFF,
which was used to find several previously unknown security vulnerabilities.

Further, we described a new methodology for testing the algorithm and discussed the results. We
found that, after an initial learning period, the algorithm significantly improved the efficiency of
discovering unique application errors over basic parameter selection techniques.

We have shown that applying the simple machine-learning algorithm presented here can markedly
improve black-box fuzzing techniques. The algorithm described in this report continues to be used
to discover new security vulnerabilities in software applications. The source code for a working
implementation of the algorithm is available in Appendix B: Scorable Set Example Source Code
(Python). Also, the algorithm described here was implemented in the CERT BFF version 2.5 and
is available under a liberal software license compatible with GPLv2 at
http://www.cert.org/download/bff.

http://www.cert.org/download/bff

CMU/SEI-2012-TN-019 | 15

Appendix A: CERT BFF Configuration

This appendix contains the configuration used for the CERT BFF instances used in the FFmpeg
campaigns described in this report. Each instance of a given scenario was configured with a dif-
ferent start_seed value (e.g., 0, 10000000, 20000000)

[campaign]

id=Default BFF Campaign

distributed=True

[target]

cmdline=ffmpeg -y -i $SEEDFILE -acodec pcm_s16le -f rawvideo /dev/null

killprocname=ffmpeg

[directories]

remote_dir=~/remote

seedfile_origin_dir=%(remote_dir)s/seeds

debugger_template_dir=%(remote_dir)s/debuggers/templates

output_dir=~/results

crashers_dir=%(output_dir)s/crashers

seedfile_output_dir=%(output_dir)s/seeds

local_dir=~/fuzzing

seedfile_local_dir=%(local_dir)s/seeds

cached_objects_dir=%(local_dir)s

temp_working_dir=%(local_dir)s/tmp

watchdog_file=/tmp/bff_watchdog

[zzuf]

copymode=0

start_seed=0

seed_interval=500

max_seed=10000000000

[verifier]

backtracelevels=5

savefailedasserts=0

minimizecrashers=False

minimize_to_string = False

[timeouts]

zzuftimeout=3

killproctimeout=60

progtimeout=5

debugger_timeout=15

valgrindtimeout=60

watchdogtimeout=3600

[memcache]

server=127.0.0.1

port=11211

CMU/SEI-2012-TN-019 | 16

For the Outside In campaigns, a similar configuration file was used that substituted the previous
[target] section with the following:

[target]

cmdline=exsimple $SEEDFILE /dev/null

killprocname=exsimple

CMU/SEI-2012-TN-019 | 17

Appendix B: Scorable Set Example Source Code (Python)

This appendix contains a simplified implementation of the algorithm described in this report.

import random

import scipy.stats

from collections import defaultdict

class ScorableSet(object):

 def __init__(self):

 self.items = {}

 self.successes = defaultdict(int)

 self.tries = defaultdict(int)

 self.confidence = 0.95

 self.scaled_scores = defaultdict(float)

 self.lambdas = defaultdict(float)

 self.sum_scores = 0.0

 self.probabilities = defaultdict(float)

 def add_item(self, key, value):

 self.items[key] = value

 def record_success(self, key, n=1):

 self.successes[key] += n

 def record_tries(self, key, n=1):

 self.tries[key] += n

 def update_probabilities(self):

 self.scaled_scores = {}

 self.sum_scores = 0.0

 # calculate scores for items

 for k in self.items.keys():

 if not self.tries[k]:

 # we have no tries, so successes don't matter yet

 self.scaled_scores[k] = 1.0

 else:

 # calculate the upper confidence bound for this item

 self.lambdas[k] = float(self.successes[k]) / float(self.tries[k])

 chisq = 1.0 - self.confidence

 df = 2 * (self.successes[k] + 1)

 delta = (scipy.stats.chisqprob(chisq, df) / 2) / self.tries[k]

 self.scaled_scores[k] = self.lambdas[k] + delta

 self.sum_scores += self.scaled_scores[k]

 # update the probabilities

 self.probabilities = {}

 for k in self.scaled_scores.keys():

 self.probabilities[k] = self.scaled_scores[k] / self.sum_scores

CMU/SEI-2012-TN-019 | 18

 def next_key(self):

 self.update_probabilities()

 # pick the next key

 x = random.uniform(0, 1)

 cumulative_probability = 0.0

 for (k, p) in self.probabilities.items():

 cumulative_probability += p

 if x < cumulative_probability:

 return k

def printstats(s):

 print '====='

 for k in 'ABCDE':

 print "Item:%s successes=%2d tries=%2d lambda=%0.3f ucb=%0.3f p=%0.3f" %

(k, s.successes[k], s.tries[k], s.lambdas[k], s.scaled_scores[k],

s.probabilities[k])

if __name__ == '__main__':

 '''Simulates a fuzzing campaign in which there are 5 files A-E. File A has

a crash

 density of 0.2, File B a crash density of 0.33, and File C a crash density

of 0.14.

 Each iteration will print the current number of successes, tries, and

probability

 that file will be chosen.'''

 print "Scorable Set Demo"

 s = ScorableSet()

 for (key, value) in zip('ABCDE', '12345'):

 s.add_item(key, value)

 for x in xrange(500):

 k = s.next_key()

 printstats(s)

 if k == 'A' and not (x % 5):

 s.record_success(k)

 elif k == 'B' and not (x % 3):

 s.record_success(k)

 elif k == 'C' and not (x % 7):

 s.record_success(k)

 s.record_tries(k)

CMU/SEI-2012-TN-019 | 19

References

URLs are valid as of the publication date of this document.

[1] B. P. Miller, L. Fredriksen, and B. So. (1990, December). An Empirical Study of the Reli-
ability of UNIX Utilities. Communications of the ACM. [Online]. 33(12), pp. 32-44. Avail-
able: http://dl.acm.org/citation.cfm?id=96279 [Accessed 22 August 2012].

[2] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarajan, and J. Steidl.
(1995, October). Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and
Services. [Online]. Available: ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-
revisited.pdf [Accessed 22 August 2012].

[3] J. E. Forrester, B. P. Miller, and USENIX Association, “An Empirical Study of the Ro-
bustness of Windows NT Applications Using Random Testing,” in Proceedings of the 4th
Conference on USENIX Windows Systems Symposium—Volume 4, Seattle, WA, 2000.

[4] P. Godefroid, M. Y. Levin, and D. Molnar. “Automated Whitebox Fuzz Testing,” in Pro-
ceedings of the Network and Distributed System Security Symposium, San Diego, CA,
2008.

[5] D. Molnar, X. C. Li, D. A. Wagner, and USENIX Association, “Dynamic Test Generation
to Find Integer Bugs in x86 Binary Linux Programs,” in Proceedings of the 18th Confer-
ence on USENIX Security Symposium, Montreal, QC, 2009, pp. 67-82.

[6] H. Abdelnur, R. State, and O. Festor, “KiF: A stateful SIP Fuzzer,” in Proceedings of the
1st international Conference on Principles, Systems and Applications of IP Telecommuni-
cations, New York, NY, 2007, pp. 47-56.

[7] P. Godefroid, From Blackbox Fuzzing to Whitebox Fuzzing towards Verification, presented
at the International Symposium on Software Testing and Analysis (ISSTA) 2010, Trento,
Italy, 2010, pp. 1-38. [Online]. Available: http://research.microsoft.com/en-
us/um/people/pg/public_psfiles/talk-issta2010.pdf [Accessed 22 August 2012].

[8] J. Foote. (2011, December 9). JasPer memory corruption vulnerabilities [Online]. Availa-
ble: http://www.kb.cert.org/vuls/id/887409 [Accessed 22 August 2012].

[9] W. Dormann. (2009, September 5). VMware VMnc AVI video codec image height heap
overflow [Online]. Available: http://www.kb.cert.org/vuls/id/444513 [Accessed 22 August
2012].

[10] W. Dormann. (2012, January 12). Microsoft Indeo video codecs contain multiple vulnera-
bilities [Online]. Available: http://www.kb.cert.org/vuls/id/228561 [Accessed 22 August
2012].

http://dl.acm.org/citation.cfm?id=96279
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-revisited.pdf
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-revisited.pdf
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-revisited.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/talk-issta2010.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/talk-issta2010.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/talk-issta2010.pdf
http://www.kb.cert.org/vuls/id/887409
http://www.kb.cert.org/vuls/id/444513
http://www.kb.cert.org/vuls/id/228561

CMU/SEI-2012-TN-019 | 20

[11] W. Dormann. (2012, January 12) Adobe Flash ActionScript AVM2 newfunction vulnerabil-
ity [Online]. Available: http://www.kb.cert.org/vuls/id/486225 [Accessed 22 August 2012].

[12] M. Aslani, N. Chung, J. Doherty, N. Stockman, and W. Quach, “Comparison of Blackbox
and Whitebox Fuzzers in Finding Software Bugs,” presented at the Team for Research in
Ubiquitous Secure Technology (TRUST) Autumn 2008 Conference, Nashville, TN, 2008.

[13] FFmpeg Developers. (2012, January 11). FFmpeg.org [Online]. Available:
http://ffmpeg.org/ [Accessed 22 August 2012].

[14] Microsoft Corporation. (2011, June 3). Microsoft Secure Development Lifecycle (SDL)
Process Guidance Version 5.1 [Online]. Available:
http://www.microsoft.com/downloads/details.aspx?FamilyID=E5FF2F9D-7E72-485A-
9EC0-5D6D076A8807&displaylang=en [Accessed 22 August 2012].

[15] CERT. (2011, February 28). CERT Basic Fuzzing Framework (BFF) v2.5 [Online]. Avail-
able: http://www.cert.org/download/bff/index.html [Accessed 22 August 2012].

[16] S. Hocevar, “zzuf - multiple purpose fuzzer,” presented at the Free and Open Source Soft-
ware Developers’ European Meeting (FOSDEM), Brussels, Belgium, 2007.

[17] S. Hocevar. (2011, May 12). zzuf - multi-purpose fuzzer [Online]. Available:
http://caca.zoy.org/wiki/zzuf [Accessed 22 August 2012].

[18] H. Dai, C. Murphy and G. Kaiser, “Configuration Fuzzing for Software Vulnerability De-
tection,” in ARES ’10 International Conference on Availability, Reliability, and Security,
Krakow, 2010, pp. 525-530.

[19] Microsoft Security Engineering Center (MSEC). (2009, June 17). !exploitable Crash Ana-
lyzer - MSEC Debugger Extensions [Online]. Available: http://msecdbg.codeplex.com/
[Accessed 22 August 2012].

[20] S. Bekrar, C. Bekrar, R. Groz, L. Mounier, and IEEE, “Finding Software Vulnerabilities by
Smart Fuzzing,” in Software Testing, Verification and Validation (ICST), 2011 IEEE
Fourth International Conference on Software Testing, Verification and Validation, Berlin,
2011.

[21] T. Wang, T. Wei, G. Gu and W. Zou, “TaintScope: A Checksum-Aware Directed Fuzzing
Tool for Automatic Software Vulnerability Detection,” in 2010 IEEE Symposium on Secu-
rity and Privacy (SP), Oakland, CA, 2010.

[22] M. Eddington. (2011, April 5). Peach Fuzzing Platform [Online]. Available:
http://peachfuzzer.com/ [Accessed 22 August 2012].

[23] J. Holland, Adaptation In Natural And Artificial Systems: An Introductory Analysis With
Applications To Biology, Control, And Artificial Intelligence, Cambridge, MA: MIT Press,
1992.

http://www.kb.cert.org/vuls/id/486225
http://ffmpeg.org/
http://www.microsoft.com/downloads/details.aspx?FamilyID=E5FF2F9D-7E72-485A-9EC0-5D6D076A8807&
http://www.microsoft.com/downloads/details.aspx?FamilyID=E5FF2F9D-7E72-485A-9EC0-5D6D076A8807&
http://www.cert.org/download/bff/index.html
http://caca.zoy.org/wiki/zzuf
http://msecdbg.codeplex.com/
http://peachfuzzer.com/

CMU/SEI-2012-TN-019 | 21

[24] Oracle. (2012, January 12). Oracle Outside-In Technology [Online]. Available:
http://www.oracle.com/us/technologies/embedded/025613.htm [Accessed 22 August
2012].

[25] A. Gelman, J. Carlin, H. Stern, and D. Rubin, Bayesian Data Analysis, Second Edition,
Boca Raton, FL: Chapman & Hall/CRC Texts in Statistical Science, 2003.

http://www.oracle.com/us/technologies/embedded/025613.htm

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

August 2012

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Probability-Based Parameter Selection for Black-Box Fuzz Testing

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Allen D. Householder and Jonathan M. Foote

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2012-TN-019

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

ESC/CAA
20 Schilling Circle, Building 1305, 3rd Floor
Hanscom AFB, MA 01731-2125

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Dynamic, randomized-input functional testing, or black-box fuzz testing, is an effective technique for finding security vulnerabilities in
software applications. Parameters for an invocation of black-box fuzz testing generally include known-good input to use as a basis for
randomization (i.e., a seed file) and a specification of how much of the seed file to randomize (i.e., the range).This report describes an
algorithm that applies basic statistical theory to the parameter selection problem and automates selection of seed files and ranges. This
algorithm was implemented in an open-source, file-interface testing tool and was used to find and mitigate vulnerabilities in several soft-
ware applications. This report generalizes the parameter selection problem, explains the algorithm, and analyzes empirical data collect-
ed from the implementation. Results of using the algorithm show a marked improvement in the efficiency of discovering unique applica-
tion errors over basic parameter selection techniques.

14. SUBJECT TERMS

Security, verification

15. NUMBER OF PAGES

30

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Abstract
	1 Introduction
	2 Background: Black-Box Fuzz Testing with the CERT BFF
	3 Maximizing the Number of Unique Crashes
	4 Methodology
	5 Results and Discussion
	6 Limitations and Future Work
	7 Conclusion
	Appendix A: CERT BFF Configuration
	Appendix B: Scorable Set Example Source Code (Python)
	References

